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ABSTRACT 
A power calculation for a study with a quantitative outcome requires information on the outcome 
distribution under the alternative hypothesis.  Researchers face challenges when they concisely specify 
alternative distributions in genetic studies because power depends on genotype frequencies and the average 
effect of each genotype.  In GWAS, investigators evaluate hundreds of thousands of associations; therefore 
it is unrealistic to specify gene frequencies and gene effects for each test and some simplification is needed.  
Software packages are available to calculate power, but many of them have limited flexibility and / or may 
have a steep learning curve. In this review, we describe to researchers and graduate students the essentials 
of a power calculation for testing for an association between a quantitative trait and genotypes.  In addition, 
we provide them with the codes of the different available software packages—free and commercial—to 
calculate this power.  The calculations can be carried out using virtually any computer language that 
computes the cumulative distribution function of a non-central F-distribution. 
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INTRODUCTION 

Researchers conduct Genetic-Wide Association Studies (GWAS) to locate genetic variants (usually SNPs: single 
nucleotide polymorphisms) responsible for common and complex diseases. An insufficient sample will result in a 
lack of statistical power, which can prevent researchers from identifying SNPs related to such diseases. Therefore, 
before conducting a GWAS, investigators frequently calculate the ‘required’ sample size to achieve a specified or 
the statistical power of available samples. Many investigators have no information on how to calculate the required 
power to conduct GWAS.  

In general, power is calculated by specifying a statistical test, e.g., analysis of variance, an effect size to be 
detected by the test, and the probability of incorrectly rejecting the null (no effect) hypothesis. The researcher 
wishes to reject the null hypothesis when the alternative hypothesis (effect of specified size) is true. The statistical 
power of a test is the probability of rejecting the null hypothesis when it is false (accept the alternative hypothesis). 
In genetic association studies, the power calculation depends on genotype frequencies and the average effect of 
each genotype. Because GWAS evaluate hundreds of thousands of associations, it is unrealistic to specify gene 
frequencies and gene effects for each test and some simplification is needed. Herein, we describe how to calculate 
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power to test for an association between a quantitative trait and genotypes by an analysis of variance (ANOVA). 
To describe the effect size of SNP’s genotypes on quantitative traits, non-centrality parameter (NCP) is used. The 
NCP defines the effect size in an ANOVA (Lehmann, 1986). Once a NCP is computed, the power calculation is 
a function call that computes the cumulative probability of a non-central F distribution, a widely available function. 
Thus, 1) it is easy to compute power for an F-test of phenotype differences among genotypes. 2) It is easy to 
implement this calculation in many statistical software packages. If the function is unavailable, there are good 
numerical approximations that are not difficult to program (Abramowitz and Stegun, 1965; Johnson et al., 1995).  

In this paper, we explain how to compute a NCP based on genetic concepts of phenotype heritability, additive 
allele effects, or dominant/recessive allele effects. We illustrate the basic power calculations coded in Mathematica, 
Matlab, R, SAS and Stata. We outline algorithms to plot power as a function of heritability and implement the 
algorithm in SAS. We outline algorithms to plot the effect size detected with power of 0.8 as a function of minor 
allele frequency and implement the algorithm in Matlab. Our approach relates the statistically relevant NCP to 
genetically relevant parameters to provide better insight into the power of a study to identify genetic variants 
associated with quantitative traits.  

Although there are several stand-alone packages that can compute power (Dupont and Plummer, 1990, 1998; 
Faul et al., 2007; Feng et al., 2011; Gauderman, 2002; Purcell et al., 2003; Spencer et al., 2009), learning how to use 
them takes time and they tend to lack flexibility. Our goal is to make the power calculation straightforward for 
someone who is familiar with any of the common statistical packages.  

METHODS 

We assume that associations between a continuous phenotype, e.g., blood pressure, and many genetic markers 
will be tested one at a time by analysis of variance (ANOVA). Table 1 is a generic ANOVA summary of the 
analysis for a single marker. Several terms of interest to the discussion of the statistical power of these analyses are 
symbolized in this table. The table assumes that phenotypes and genotypes are measured in n subjects. The degrees 
of freedom for genotypes, d, will depend on how we evaluate the genotypes, but typically d will be 1 or 2.  

The p covariates are incorporated to adjust for non-genetic factors that may affect the phenotype. In the case 
of blood pressure for example, these might be covariates that adjust for age, blood pressure medication, and 
population stratification. The same covariate adjustment is applied to the analysis of each genetic marker. So 
operationally the phenotype measurements are initially adjusted by these covariates and the marker-specific 
computations are usually run on the residuals after the covariate adjustment. An ANOVA test of ‘no gene 
association’ tests the null hypothesis that there are no phenotype differences among genotypes, i.e., η2 = 0. Here, 
η2 symbolizes the effect size, which is a summary of the magnitude of the phenotype differences among genotypes. 
The power of this F-test can be computed using functions that are widely available in statistical software packages. 
Power depends on the magnitude of a so-called non-centrality parameter (NCP), λ = η2 ⁄ σ2, the degrees of freedom, 
d and ν, and the significance level, α. In particular, the power of this test is computed as the probability that the F-
ratio will exceed a value, Power  = Pr[F(d, ν, λ) ≥ c], where F(d, ν, λ) denotes a random variable with a non-central 
F distribution and c denotes the value of an F-ratio that is statistically significant at the α–level, i.e., c such that 
α = Pr[F(d, ν, λ = 0) ≥ c]. These two values, Power and c, can be calculated in many software packages, e.g., SAS or 
Matlab. Thus, it is straightforward to compute power for an F-test of phenotype differences among genotypes 
when we specify a NCP. Unfortunately a NCP does not provide an insightful interpretation of the effect size in 
the context of a GWAS that seeks to identify differences in a continuous phenotype associated with single 
nucleotide polymorphisms (SNP).  

NCP as a Function of Heritability  

Our initial aim is to relate the non-centrality parameter to the proportion of variation that is explained by the 
SNP, 𝑅𝑅2. When the computations are run on the residuals after covariate adjustment, 𝑅𝑅2is simply the R-squared 
associated with adding genotype. With respect to entries in Table 1, this is the observed proportion of the 
phenotype variation that is explained by the SNP genotypes after adjusting for the covariates, 

Table 1. ANOVA table testing for changes in phenotype associated with the genotypes of a SNP 
Source of Variation Degrees of Freedom Sum of Squares Expected Mean Squared Error F-ratio 
Covariates p -1 * * * 
Genotypes 𝑑𝑑 𝑆𝑆𝑆𝑆𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝜎𝜎2 + 𝜂𝜂2 𝐹𝐹 =

𝜈𝜈 𝑆𝑆𝑆𝑆𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔
𝑑𝑑 𝑆𝑆𝑆𝑆𝑟𝑟𝑔𝑔𝑔𝑔𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

 
Error 𝜈𝜈 = 𝑛𝑛 − 𝑝𝑝 − 𝑑𝑑 𝑆𝑆𝑆𝑆𝑟𝑟𝑔𝑔𝑔𝑔𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝜎𝜎2  
Total n – 1    
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𝑅𝑅2 =
𝑆𝑆𝑆𝑆𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔

𝑆𝑆𝑆𝑆𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 + 𝑆𝑆𝑆𝑆𝑟𝑟𝑔𝑔𝑔𝑔𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
 

The expected value of a non-central F-distribution is:  

𝜇𝜇𝐹𝐹 =
𝜈𝜈(𝑑𝑑 + 𝜆𝜆)
𝑑𝑑(𝜈𝜈 − 2) 

The expected F is a one-to-one function of the non-centrality parameter,𝜆𝜆, and consequently specifying𝜇𝜇𝐹𝐹is 
equivalent to specifying the non-centrality parameter, specifically 

𝜆𝜆 =
𝑑𝑑(𝜈𝜈 − 2)

𝜈𝜈
𝜇𝜇𝐹𝐹 − 𝑑𝑑 

The ‘true’ proportion of the phenotype variation (after adjustment for covariates) that is explained by the 
genotypes is denoted 𝜋𝜋𝑅𝑅. Replacing the F-ratio in Table 1 with the expectations, 

𝜇𝜇𝐹𝐹 =
𝜈𝜈
𝑑𝑑

𝜋𝜋𝑅𝑅
1 − 𝜋𝜋𝑅𝑅

 

yields a relationship that specifies the non-centrality parameter as a function of the expected proportion of the 
phenotype variation that is explained by the genotypes, i.e., 

𝜆𝜆 =
(𝜈𝜈 − 2)𝜋𝜋𝑅𝑅

1 − 𝜋𝜋𝑅𝑅
− 𝑑𝑑 (1) 

Genetic Models 

The entries in Table 1 assume a simple model for phenotype heritability where each genotype yields a 
phenotype that has a normal distribution with genotype-specific mean and a variance that is the same across 
genotypes. For our purpose here, it is convenient to assume that there are two alleles, one of which has an allele 
frequency less than or equal to the other, a.k.a. minor allele. The genotype frequencies of SNPs are usually unknown 
at the experimental design stage. However for power calculations, we approximate genotype frequencies in terms 
of their minor allele frequency (MAF), and further assume that genotypes are in Hardy-Weinberg equilibrium. That 
is, genotype frequencies for the genotype with 0, 1, or 2 minor alleles, {𝑓𝑓0,𝑓𝑓1,𝑓𝑓2} , are approximated by 
{(1 − 𝑞𝑞)2, 2𝑞𝑞(1 − 𝑞𝑞),𝑞𝑞2}  where q is the MAF. Under this model, 𝜂𝜂2 = 𝑛𝑛∑ 𝑓𝑓𝑟𝑟(𝜇𝜇𝑟𝑟 − �̅�𝜇)22

𝑟𝑟=0 , where 
𝜇𝜇𝑟𝑟designates the mean value of the phenotype distribution for a genotype with ‘a’ minor alleles. In this general 
setting, the task of specifying 𝜇𝜇𝑟𝑟 for every marker is too tedious to be useful, and we recommend the preceding 
approach for obtaining the NCP. However, there are two genetic models which provide straightforward 
interpretations.  

NCP in an Additive Genetic Model 

An additive genetic model assumes that alleles have an additive effect on the phenotype and our assumptions 
allow us to relate the NCP to the trend in the phenotype means, 𝛽𝛽, with the number of minor alleles. To model 
this, we count the number of a specified allele in the genotype, xa = 0, 1, 2, and write the phenotype means as 
μa = μ0 + βxa. Note that this formulation implies that μ = μ0 + βx and μa − μ = β(xa − x). The test for a trend in the 
phenotype with increasing count of minor alleles is a test that 𝛽𝛽 = 0. In the context of Table 1, this trend test 
corresponds to 𝑑𝑑 = 1 and  

𝜂𝜂2 = 𝑛𝑛𝛽𝛽2�𝑓𝑓𝑟𝑟(𝑥𝑥𝑟𝑟 − �̅�𝑥)2
2

𝑟𝑟=0

 

where 𝑓𝑓𝑟𝑟 is the genotype frequency and 𝛽𝛽 is the slope of the trend (change in phenotype mean per minor allele). 
These assumptions allow us to relate the effect size, 𝛽𝛽 𝜎𝜎⁄ , to the NCP, 

𝜆𝜆 =
𝜂𝜂2

𝜎𝜎2
= 𝑛𝑛(𝛽𝛽 𝜎𝜎⁄ )2�𝑓𝑓𝑟𝑟(𝑥𝑥𝑟𝑟 − �̅�𝑥)2

2

𝑟𝑟=0

 (2) 

NCP in dominant/recessive models 
We can co-opt the previous results to apply to dominant genetic models. If the minor allele is dominant, let  

𝑥𝑥𝑟𝑟 = �0 if 𝑎𝑎 = 0
1 otherwise, 
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and if the minor allele is recessive let 

𝑥𝑥𝑟𝑟 = �1 if 𝑎𝑎 = 0
0 otherwise. 

with either off these changes to the definition of 𝑥𝑥𝑟𝑟, the NCP can be computed using the same formulae as the 
additive genetic model. However the interpretation of the slope parameter, 𝛽𝛽, changes to the difference between 
the phenotype means of the dominant genotypes and the recessive genotype, respectively. Note that the power is 
the same whether the minor allele is dominant or recessive since 𝛽𝛽 computed under the dominant assumption 
simply becomes −𝛽𝛽 under the recessive assumption; both yield the same NCP power is the same whether the 
minor allele is dominant or recessive since 𝛽𝛽 computed under the dominant assumption simply becomes −𝛽𝛽 under 
the recessive assumption; both yield the same NCP. 

RESULTS 

Power is the probability of a significant ANOVA under the alternative hypothesis, i.e., Pr(F ≥ c) where F 
denotes a random variable with a non-central F-distribution, F(d, n-p-d, NCP), and c is the value that is significant 
at the a-level : Critical Value. Power and c can be calculated in many software packages. Figure 1 illustrates the 
fundamental power calculation coded in several well-known computer packages. The codes in Figure 2 outlines 
the basic power calculation. The user specifies the type 1 error (significance level), sample size (n), number of 
adjusting covariates (p), the numerator degrees of freedom (d), and the NCP. Typically a marker SNP has two 
alleles and a minor allele frequency (MAF) exceeding 5%. In a large sample, n = 1000, at least a few individuals of 
the three possible genotypes should be present in the sample giving the degrees of freedom for genotypes, 𝑑𝑑= 2. 
The code in Figure 1 can be embedded in a loop that varies the NCP as a function of the expected proportion of 
the variation that is explained by the genotypes (Eqn 1) or as a function of 𝛽𝛽 𝜎𝜎⁄  (Eqn 2). Figure 2 plots power 
curves based on the expected proportion of the variation that is explained by the genotypes. This figure iterates 
the preceding code for sample sizes, n = 500, 1000, 2000, 4000, 8000, and NCP defined by Eqn 1 with 𝜋𝜋𝑅𝑅 = 0 to 
0.01 by 0.001. Figure 2 was produced using Matlab as the authors are more adept at plotting using this 
programming language. SAS code that will reproduce the essential features of Figure 2 are included in the 

SAS code: 
a = 0.05/2000; * type1 error ; 
n = 1000 ; * sample size; 
p = 25; *other covariates; 
d = 2 ; 
v = n - p - d ; 
c = finv(1-a,d,v) ; 
ncp = 25 ; * non-centrality parameter ; 
power = 1 - probf(c,d,v,ncp); 
 

Matlab code: 
a = 0.05/2000 ; % type1 error 
n = 1000 ; % sample size 
p = 25 ; % other covariates  
d = 2 ; 
v = n - p - d ; 
c = finv(1-a,d,v) ; 
ncp = 25 ; % non-centrality parameter 
power = 1 - ncfcdf(c,d,v,ncp); 

R code: 
a = 0.05 / 2000 # type1 error 
n = 1000 # sample size 
p = 25 # other covariates 
d = 2 
v = n - p - d 
c = qf(1-a, d, v) 
ncp = 25 
power = pf(c, d, v, ncp, lower.tail = FALSE) 

Stata code: 
gen a = 0.05 / 2000  
gen n = 1000  
gen p = 25 
gen d = 2  
gen v = n - p - d 
gen c = invFtail(d,v,1-a) 
gen ncp = 25 
gen power = nFtail(d, v, ncp, c) 
 

Mathematica code: 
a = 0.05 / 2000  
n = 1000  
p = 25  
d = 2 
v = n - p - d 
c = Quantile[FRatioDistribution[d, v], 1-a] 
ncp = 25 
power = 1 – CDF[NoncentralFRatioDistribution[d, v, ncp], c] 
 

All give: c = 10.7129 and power = 0.6824 
Figure 1. Computer code in SAS, Matlab, R, Stata, and Mathematica that compute power for an ANOVA 
(Table 1) 
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appendix. Because the NCP in Eqn 2 also depends on the MAF, we report the effect size, 𝛽𝛽 𝜎𝜎⁄ , that has a power 
of 0.8 as a function of the MAF. Conceptually, this could be computed by adding another loop that varies the 
MAF and saving the effect sizes with a power of 0.8. Figure 3 plots the effect size detectable with a power of 0.8 
as a function of the MAF for the sample sizes used in Figure 2. This was computed using a Matlab program. The 
calculations can be finessed to express power in the context of a disease locus that is observed via linked markers. 
The appended Matlab program incorporates an adjustment for the correlation between a disease locus and the 
markers.  

 

 
Figure 2. Power of an ANOVA for several sample sizes as a function of the proportion of the phenotype variation 
that is explained by the genotypes  

 
Figure 3. Effect size detectable with a power of 0.8 in the dominant/recessive genetic model as a function of the 
minor allele frequency for several sample sizes 
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DISCUSSION  

In this paper, we described computer codes that calculate the required statistical power for detecting a 
significant association between a genetic variant and a quantitative trait in GWAS under additive, dominant and 
recessive models for the phenotype — Power Calculation for SNPs and quantitative trait Association (PCSQT). 
These codes, i.e. PCSQT, were implemented in five widely used commercial statistical packages. The other 
statistical methods do not explicitly include this parameter while calculating study power. Our approach relates the 
statistically relevant NCP to genetically relevant parameters to provide better insight into the identification of 
genetic variants associated with quantitative traits. If the NCP is specified it is easy to compute statistical power 
for an F-test of phenotype differences among genotypes that can easily be implemented in many statistical software 
packages. The calculations can answer the following question: if a Single Nuclear Polymorphism (SNP) explains 
% of the variation i.e. Heritability, with sample size n, what is the statistical power of the proposed study? 

 These codes permit investigators to employ heritability as an effect size, instead of the mean of a quantitative 
trait, which is often unavailable in genetic studies. To calculate power, we use the following parameters: (2) Total 
sample size; (2) Heritability (the range is 0~1); (3) type 1 error rate: (4) number of SNPs in the genetic study: (5) 
number of covariates; 6) linkage Disequilibrium (LD) r2 (Pritchard and Przeworski, 2001): investigators input a LD 
value between a genetic marker and a hypothesized causative variant. When the LD between the genetic and 
causative markers is r2, the sample size (N) is increased to be N/ r2. In other words, to achieve approximately the 
same power with the genetic marker as is achieved with the causative variant, the sample size must be increased 
by a factor of 1/ r2. (Pritchard and Przeworski, 2001). 

The output information include: (1) statistical power; (2) a family of power curves plots with different 
heritability and sample size combinations, as shown in Figure 1. The suggested statistical approach has some 
limitations. First, population stratification is not considered while calculating statistical power using these codes. 
Nevertheless, it can be added as one of the covariates while estimating the required power calculation. Second, the 
effect of the interaction between genetic variants, and environmental factors on the power determination cannot 
be included in the power calculation. In a GWAS that examines a million SNPs, a Bonferroni adjustment for 
multiple comparisons implies that the critical value, c, is computed for a significance level on the order of 10-8  
(Klein, 2007). The numerical algorithm implemented in the software to approximate c may or may not be adequate 
for the task. For the five packages. the software packages in Figure 1, we could not find documentation for the 
algorithm or the error in the numerical approximation. Mathematica allows one to specify the number of significant 
digits; we set this to 20 and use this as a standard in Table 2. Table 2 presents an example of critical values 
computed to 6 decimal places for examined software packages and where the values are computed, all agree except 
for 𝛼𝛼 = 10−12 . SAS was the only software package that failed to compute the critical values for 𝛼𝛼 > 10−5 . 
Differences among critical values in Table 2 have little practical importance. In practice, the F-distribution will 
only approximate the actual distribution of the ratio statistic in an analysis of variance (Table 1). The approximation 
is satisfactory at conventional significance levels such as 0.05 or 0.01, and p-values computed from the F-
distribution are generally accepted as ‘good’ by the scientific community. However, very small p-values, such as 
10-8, imply a degree of approximation to the distribution of the test statistic that is unlikely to be achieved.  

Key Points 

• Statistical power calculation should be performed before conducting genetic association studies.  
• Several stand-alone software packages are available to do power calculations. Many researchers are 

unfamiliar with these packages while they are familiar with standard statistical packages.  

Table 2. Software packages and Critical value for F-distribution with 1, 1000 degrees of freedom 
Significance level Critical value for F-distribution with 1, 1000 degrees of freedom 

Mathematica SAS Matlab R Stata 
1E-03 10.891865559 10.891866 10.891866 10.891866 10.891866 
1E-04 15.259521389 15.259521 15.259521 15.259521 15.259521 
1E-05 19.712947049 19.712947 19.712947 19.712947 19.712948 
1E-06 24.228934152 . 24.228934 24.228934 24.228933 
1E-07 28.794927827 . 28.794928 28.794928 28.794928 
1E-08 33.403406313 . 33.403406 33.403406 33.403408 
1E-09 38.049531722 . 38.049532 38.049532 38.049530 
1E-10 42.730026564 . 42.730026 42.730026 42.730026 
1E-11 47.442581611 . 47.442581 47.442581 47.442581 
1E-12 52.185519872 . 52.185566 52.185566 52.185520 
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• We demonstrated how to code power calculations in several standard statistical packages—Mathematica, 
Matlab, R, SAS, Stata—that employ an F-test to determine the required statistical power to detect a 
statistical relationship between genetic variants and a continuous trait in genetic association studies under 
additive, dominant and recessive models’ assumptions.  
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