European Journal of Environment and Public Health

Knowledge on the Pathogenesis and New Diagnosing Techniques Approach for Low SARS-CoV-2 Testing Rates: A Case Study of Nigeria
Abass Abdulateef Ohilebo 1 2 * , Samuel Olarewaju Ogunsola 3, Abdullahi Tunde Aborode 4, Ademola Emmanuel Aiyenuro 5
More Detail
1 Department of Biochemistry, Ambrose Alli University Ekpoma, Edo State, NIGERIA
2 Centre for BioCode, NIGERIA
3 Department of Biochemistry, Federal University of Technology, Akure, Ondo State, NIGERIA
4 Shaping Women in STEM (SWIS) Africa Research Hub, NIGERIA
5 Department of Microbiology, Federal University of Technology, Akure, Ondo State, NIGERIA
* Corresponding Author
Review Article

European Journal of Environment and Public Health, 2021 - Volume 5 Issue 1, Article No: em0064
https://doi.org/10.29333/ejeph/9145

Published Online: 04 Nov 2020

Views: 132 | Downloads: 58

How to cite this article
APA 6th edition
In-text citation: (Ohilebo et al., 2021)
Reference: Ohilebo, A. A., Ogunsola, S. O., Aborode, A. T., & Aiyenuro, A. E. (2021). Knowledge on the Pathogenesis and New Diagnosing Techniques Approach for Low SARS-CoV-2 Testing Rates: A Case Study of Nigeria. European Journal of Environment and Public Health, 5(1), em0064. https://doi.org/10.29333/ejeph/9145
Vancouver
In-text citation: (1), (2), (3), etc.
Reference: Ohilebo AA, Ogunsola SO, Aborode AT, Aiyenuro AE. Knowledge on the Pathogenesis and New Diagnosing Techniques Approach for Low SARS-CoV-2 Testing Rates: A Case Study of Nigeria. EUROPEAN J ENV PUBLI. 2021;5(1):em0064. https://doi.org/10.29333/ejeph/9145
AMA 10th edition
In-text citation: (1), (2), (3), etc.
Reference: Ohilebo AA, Ogunsola SO, Aborode AT, Aiyenuro AE. Knowledge on the Pathogenesis and New Diagnosing Techniques Approach for Low SARS-CoV-2 Testing Rates: A Case Study of Nigeria. EUROPEAN J ENV PUBLI. 2021;5(1), em0064. https://doi.org/10.29333/ejeph/9145
Chicago
In-text citation: (Ohilebo et al., 2021)
Reference: Ohilebo, Abass Abdulateef, Samuel Olarewaju Ogunsola, Abdullahi Tunde Aborode, and Ademola Emmanuel Aiyenuro. "Knowledge on the Pathogenesis and New Diagnosing Techniques Approach for Low SARS-CoV-2 Testing Rates: A Case Study of Nigeria". European Journal of Environment and Public Health 2021 5 no. 1 (2021): em0064. https://doi.org/10.29333/ejeph/9145
Harvard
In-text citation: (Ohilebo et al., 2021)
Reference: Ohilebo, A. A., Ogunsola, S. O., Aborode, A. T., and Aiyenuro, A. E. (2021). Knowledge on the Pathogenesis and New Diagnosing Techniques Approach for Low SARS-CoV-2 Testing Rates: A Case Study of Nigeria. European Journal of Environment and Public Health, 5(1), em0064. https://doi.org/10.29333/ejeph/9145
MLA
In-text citation: (Ohilebo et al., 2021)
Reference: Ohilebo, Abass Abdulateef et al. "Knowledge on the Pathogenesis and New Diagnosing Techniques Approach for Low SARS-CoV-2 Testing Rates: A Case Study of Nigeria". European Journal of Environment and Public Health, vol. 5, no. 1, 2021, em0064. https://doi.org/10.29333/ejeph/9145
ABSTRACT
SARS-CoV-2 (novel coronavirus responsible for coronavirus disease 2019) is a beta (β-) sub-class of the coronavirus which has caused more harm to live than expected. SARS-CoV-2 which was declared as a pandemic by the World Health Organization (WHO) on 11 March 2020, has caused governments globally to declare and implement the “lock down” policy for its citizen, including Nigeria with a large population in Africa. The country National Centre for Disease Control (NCDC) made it known the testing methods adopted by them are not effective at curtaining the large population of her citizens. Our main goal in this review is to focus on the SARS-CoV-2 pathogenesis and new diagnostic techniques approaches that can be adopted in Nigeria. A total of 88,432 testing has been carried out by the NCDC, with 14,554 confirmed cases in 200 million populations. Although the SARS-CoV-2 test adopted by the NCDC has been on the molecular testing using real-time reverse transcriptase polymerase chain reaction (RT-PCR) and antibody tests using blood, which has many demerits. We therefore recommend the NCDC should approach new diagnostic techniques like use of saliva samples and loop-mediated isothermal amplification (LAMP). Conclusively, when these methods are considered, testing rates will greatly improve.
KEYWORDS
REFERENCES
  • Ajari, E. E. (2020). Why Menstrual Health and Wellbeing Promotion should not be sidelined in Africa’s response to COVID-19. European Journal of Environment and Public Health, 4(2), em0045. https://doi.org/10.29333/ejeph/8278
  • Akpoveta, O. A., Joy, O. and Joy, O. (2020). COVID-19 Pandemic: Nigeria’s economic and business disruptions. International Scholar Journal of Arts and Social Science Research, 2(4), 14-31. https://doi.org/10.2705/isjassr.v2i4.45
  • Beeching, N. J., Fletcher, T. E. and Beadsworth, M. B. J. (2020). COVID-19: testing times. British Medical Journal, 369, 1403. https://doi.org/10.1136/bmj.m1403
  • Ben-Assa, N., Naddaf, R., Gefen, T., Capucha, T., Hajjo, H., Mandelbaum, N. and Rotem, A. (2020). SARS-CoV-2 On-the-Spot Virus Detection Directly from Patients. Available at: https://www.medrxiv.org/content/10.1101/2020.04.22.20072389v2 (Accessed: 12 June 2020).
  • Bertram, S., Glowacka, I., Müller, M. A., Lavender, H., Gnirss, K. and Nehlmeier, I. (2011). Cleavage and activation of the severe acute respiratory syndrome coronavirus spike protein by human airway trypsin-like protease. Journal of Virology, 85(24), 13363-13372. https://doi.org/10.1128/JVI.05300-11
  • Burki, T. K. (2020). Testing for COVID-19. Available at: https://europepmc.org/article/pmc/pmc7259912 (Accessed: 12 June 2020).
  • Butler, D. J., Mozsary, C., Meydan, C., Danko, D. C., Foox, J., Rosiene, J. and Ivanov, N. A. (2020). Host, viral, and environmental transcriptome profiles of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Available at: https://www.biorxiv.org/content/10.1101/2020.04.20.048066v3 (Accessed: 11 June 2020).
  • Carver, C. and Jones, N. (2020). Comparative accuracy of oropharyngeal and nasopharyngeal swabs for diagnosis of COVID-19. Available at: https://www.cebm.net/COVID-19/comparative-accuracy-of-oropharyngeal-and-nasopharyngeal-swabs-for-diagnosis-of-covid-19/ (Accessed: 12 June 2020).
  • Centre for Disease Control, CDC. (2020). 2019-novel coronavirus (2019-nCoV) real-time RT-PCR diagnostic Panel. Available at: https://www.fda.gov/media/134922/download (Accessed:12 June 2020).
  • Chang, T. H., Wu, J. L. and Chang, L. Y. (2020). Clinical characteristics and diagnostic challenges of pediatric COVID-19: A systematic review and meta-analysis. Journal of the Formosan Medical Association, 119(5), 982-989. https://doi.org/10.1016/j.jfma.2020.04.007
  • Chen, G., Di, W., Wei, G. and Yong, C. (2020). Clinical and immunological features of severe and moderate coronavirus disease 2019. Journal of clinical investigation, 130(5), 2620-2629. https://doi.org/10.1172/jci137244
  • Cheng, M. P., Papenburg, J., Desjardins, M., Kanjilal, S., Quach, C., Libman, M., Dittrich, S. and Yansouni, C. P. (2020). Diagnostic Testing for Severe Acute Respiratory Syndrome-Related Coronavirus-2: A Narrative Review. Annals of Internal Medicine, 172(11), 726-734. https://doi.org/10.7326/M20-1301
  • Cui, J., Li, F. and Shi, Z. L. (2019). Origin and evolution of pathogenic coronaviruses. Nature Reviews Microbiology, 17(3), 181-192. https://doi.org/10.1038/s41579-018-0118-9
  • deWilde, A. H., Snijder, E. J., Kikkert, M. and vanHemert, M. J. (2018). Host factors in coronavirus replication. Available at: http://www.ncbi.nlm.nih.gov/pubmed/28643204 (Accessed: 10 June 2020).
  • Dinesh, K. (2020). An overview of coronaviruses including the SARS-2 coronavirus – Molecular biology, epidemiology and clinical implications. Current Medicine Research and Practice, 10(2), 54-64. https://doi.org/10.1016/j.cmrp.2020.04.001
  • Donoghue, M., Hsieh, F., Baronas, E., Godbout, K., Gosselin, M. and Stagliano N. (2000). A novel angiotensin-converting enzyme related carboxypeptidase converts angiotensin I to angiotensin 1-9. Circulation Research, 87(5), 1-9. https://doi.org/10.1161/01.RES.87.5.e1
  • European Centre for Disease Prevention and Control, ECDC. (2020). Question and Answer on COVID-19. Available at: https://www.ecdc.europa.eu/en/covid-19/questions-answers (Accessed: 10 June 2020).
  • European Centre for Disease Prevention and Control, ECDC. (2020). COVID-19 situation update worldwide as of 13 June 2020. Available at: https://www.ecdc.europa.eu/en/geographical-distribution-2019-ncov-cases (Accessed: 12 June 2020).
  • Fehr, A. R. and Perlman, S. (2015). Coronaviruses: An overview of their replication and pathogenesis. Methods in Molecular Biology, 1282, 1-23. https://doi.org/10.1007/978-1-4939-2438-7_1
  • Fujino, M., Yoshida, N., Yamaguchi, S., Hosaka, N., Ota, Y., Notomi, T. and Nakayama, T. (2005). A simple method for the detection of measles virus genome by loop‐mediated isothermal amplification (LAMP). Journal of Medical Virology, 76(3), 406-413. https://doi.org/10.1002/jmv.20371
  • Geng, L., Yaohua, F., Yanni, L., Tiantian, H., Zonghui, L., Peiwen, Z., … and Jianguo, W. (2020). Coronavirus infections and immune responses. Journal of Medical Virology, 92, 424-432. https://doi.org/10.1002/jmv.25685
  • Giordano, G., Blanchini, F., Bruno, R., Colaneri, P., Di Filippo, A., Di Matteo, A. and Colaneri, M. (2020). Modelling the COVID-19 epidemic and implementation of population-wide interventions in Italy. Available at: https://www.nature.com/articles/s41591-020-0883-7#citeas (Accessed: 11 June 2020).
  • Glowacka, I., Bertram, S., Müller, M. A., Allen, P., Soilleux, E. and Pfefferle, S. (2011). Evidence that TMPRSS2 activates the severe acute respiratory syndrome coronavirus spike protein for membrane fusion and reduces viral control by the humoral immune response. Journal of Virology, 85(9), 4122-4134. https://doi.org/10.1128/JVI.02232-10
  • Guang, C., Di, W. and Wei, G. (2020). Clinical and immunological features of severe and moderate coronavirus disease 2019. Journal of Clinical Investigation, 130(5), 2620. https://doi.org/10.1172/JCI137244
  • Guo, Y., Cao, Q. and Hong, Z. (2020). The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak: An update on the status. Military Medical Research, 7(11), 20-24. https://doi.org/10.1186/s40779-020-00240-0
  • Hoffmann, M., Pöhlmann, S. and Diederich, S. (2020). SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically-proven protease inhibitor. Cell, 181(2), 271-280. https://doi.org/10.1016/j.cell.2020.02.052
  • Huang, C., Wang, Y. and Li, X. (2020). Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet, 395, 497-506. https://doi.org/10.1016/S0140-6736(20)30183-5
  • Ibeh, I. N., Enitan, S. S., Akele, R. Y. and Isitua, C. C. (2020). A Review of the COVID-19 pandemic and the role of medical laboratory scientists in containment. Journal of Medical Laboratory Science, 30(1), 68-89.
  • Irving, S. A., Vandermause, M. F., Shay, D. K. and Belongia, E. A. (2012). Comparison of nasal and nasopharyngeal swabs for influenza detection in adults. Clinical Medicine and Research, 10(4), 215-218. https://doi.org/10.3121/cmr.2012.1084
  • Jin, Y., Yang, H., Wu, W., Chen, S., Zhang, W. and Duan, G. (2020). Virology, epidemiology, pathogenesis and control of COVID-19. Viruses, 12(372), 1-17. https://doi.org/10.3390/v12040372
  • Karthik, K., Rathore, R., Thomas, P., Arun, T. R., Viswas, K. N., Dhama, K. and Agarwal, R. K. (2014). New closed tube loop-mediated isothermal amplification assay for the prevention of product cross-contamination. MethodsX, 1, 137-143. https://doi.org/10.1016/j.mex.2014.08.009
  • Li, W., Moore, M. J., Vasllieva, N., Sui, J., Wong, S. K. and Berne, M. A. (2003). Angiotensin-converting enzyme-2 is a functional receptor for the SARS coronavirus. Nature, 426(6965), 450-454. https://doi.org/10.1038/nature02145
  • Li, Z., Yi, Y. and Luo, X. (2020). Development and clinical application of a rapid IgM-IgG combined antibody test for SARS-CoV-2 infection diagnosis. Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7228300/ (Accessed: 12 June 2020).
  • Loeffelholz, M. J. and Tang, Y. W. (2020). Laboratory diagnosis of emerging human coronavirus infections: The state of the art. Emerging Microbes and Infections, 9, 747-756. https://doi.org/10.1080/22221751.2020.1745095
  • Lu, R., Zhao, X. and Li, J. (2020). Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet, 395, 565-574. https://doi.org/10.1016/S0140-6736(20)30251-8
  • Marco, C., Michael, R., Arturo, C. and Scott, C. (2020). Features, Evaluation and Treatment Coronavirus (COVID-19). Available at: https://www.ncbi.nlm.nih.gov/books/NBK554776/ (Accessed: 10 June 2020).
  • Medinilla, A., Byiers, B. and Apiko, P. (2020). African regional responses to COVID-19. Available at: https://ecdpm.org/wp-content/uploads/African-regional-responses-COVID-19-discussion-paper-272-ECDPM.pdf (Accessed: 11 June 2020).
  • Monchatre-Leroy, E., Boue, F., Boucher, J. M., Renault, C. and Moutou, F. (2017). Identification of alpha and beta coronavirus in wildlife species in France: bats, rodents, rabbits, and hedgehogs. Viruses, 9(12), 364. https://doi.org/10.3390/v9120364
  • Muhammad, A. S., Suliman, K., Abeer, K., Nadia, B. and Rabeea, S. (2020). COVID-19 infection: Origin, transmission, and characteristics of human coronaviruses. Journal of Advanced Research, 24, 91-98. https://doi.org/10.1016/j.jare.2020.03.005
  • Nigeria Centre for Disease Control, NCDC. (2020). COVID-19 in Nigeria. Available at: https://covid19.ncdc.gov.ng/ (Accessed: 12 June 2020).
  • Nigeria Centre for Disease Control, NCDC. (2020). Nigeria COVID-19 update; June 12, 2020. Available at: https://ncdc.gov.ng/news/237/update-on-covid-19-in-nigeria (Accessed: 12 June 2020).
  • Okba, N. M. A., Müller, M. A. and Li, W. (2020). SARS-CoV-2 specific antibody responses in COVID-19 patients. Available at: https://www.medrxiv.org/content/10.1101/2020.03.18.20038059v1 (Accessed: 12 June 2020).
  • Oluwafolajimi, A., Boluwatife, A., Ikponmwosa, G., Kenechukwu, F., Judith, O., Olayinka, A., Ifeoluwa, D. and Hilda, A. (2020). Current knowledge on the pathogenesis of and therapeutic options against SARS-CoV-2: An Extensive review of the available evidence. International Journal of Pathogen Research, 4(2), 16-36. https://doi.org/10.9734/ijpr/2020/v4i230108
  • Paul. O. (2020). First African SARS-CoV-2 genome sequence from Nigerian COVID-19 case. Available at: https://virological.org/t/first-african-SARS-CoV-2-genome-sequence-from-nigerian-COVID-19-case/421 (Accessed: 10 June 2020).
  • Perlman, S. and Netland, J. (2009). Coronaviruses post-SARS: Update on replication and pathogenesis. Nature Reviews Microbiology, 7(6), 439-450. https://doi.org/10.1038/nrmicro2147
  • Qian, Y., Zeng, T., Wang, H., Xu, M., Chen, J., Hu, N., Chen, D. and Liu, Y. (2020). Safety management of nasopharyngeal specimen collection from suspected cases of coronavirus disease 2019. International Journal of Nursing Sciences, 7(2), 153-156. https://doi.org/10.1016/j.ijnss.2020.03.012
  • Raj, V.S. Mou, H. Smits, S.L. Dekkers, D.H. Müller, M.A. and Dijkman, R. (2013). Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus. Nature, 495(7440), 251-254. https://doi.org/10.1038/nature12005
  • Roser, M., Ritchie, H., Ortiz-Ospina, E. and Hasell, J. (2020). Coronavirus Pandemic (COVID-19). Available at: https://ourworldindata.org/coronavirus (Accessed: 11 June 2020).
  • Roujian, L., Xiang, Z., Juan, L., Peihua, N. and Honglong, W. (2019). Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet, 395(10224), 565-574. https://doi.org/10.1016/S0140-6736(20)30251-8
  • Sheridan, C. (2020). Fast, portable tests come online to curb coronavirus pandemic. Nature Biotechnology, 38(5), 515-518. https://doi.org/10.1038/d41587-020-00010-2
  • Sola, I., Almazan, F., Zuniga, S. and Enjuanes, L. (2015). Continuous and discontinuous RNA synthesis in coronaviruses. Annual Review of Virology, 2, 265-288. https://doi.org/10.1146/annurev-virology-100114-055218
  • Song, Z., Xu, Y., Bao, L., Zhang, L., Yu, P. and Qu, Y. (2019). From SARS to MERS, thrusting coronaviruses into the spotlight. Viruses, 11(1), 59. https://doi.org/10.3390/v11010059
  • Tian, S., Hu, N. and Lou, J. (2020). Characteristics of COVID-19 infection in BeXuijing. Journal of Infection, 80, 401-406. https://doi.org/10.1016/j.jinf.2020.02.018
  • Tostmann, A., Bradley, J. and Bousema, T. (2020). Strong associations and moderate predictive value of early symptoms for SARS-CoV-2 test positivity among healthcare workers, the Netherlands, March 2020. European Communicable Disease Bulletin, 25(16), 2000508. https://doi.org/10.2807/15607917.ES.2020.25.16.2000508
  • Wang, C. J., Ng, C. Y. and Brook, R.H. (2020). Response to COVID-19 in Taiwan: Big data analytics, new technology, and proactive testing. Journal of the American Medical Association, 323(14), 1341-1342. https://doi.org/10.1001/jama.2020.3151
  • Wang, J., Xu, Z., Wang, J., Feng, R., An, Y., Ao, W., Gao, Y., Wang, X. and Xie, Z. (2020). CT characteristics of patients infected with 2019 novel coronavirus: association with clinical type. Clinical Radiology, 75(6), 408-414. https://doi.org/10.1016/j.crad.2020.04.001
  • Wang, L. and Wong, A. (2020). COVID-Net: A Tailored Deep Convolutional Neural Network Design for Detection of COVID-19 Cases from Chest X-Ray Images. Available at: https://arxiv.org/abs/2003.09871 (Accessed: 12 June 2020).
  • Wei, G., Ting, G., Jinhua, L. and Wenlong, H. (2020). Novel coronavirus infection in children outside of Wuhan, China. Pediatric pulmonology, 55(6), 1424-1429. https://doi.org/10.1002/ppul.24762
  • Weiss, S. R. and Leibowitz, J. L. (2011). Coronavirus pathogenesis. Available at: http://www.ncbi.nlm.nih.gov/pubmed/22094080 (Accessed: 10 June 2020).
  • Williams, E., Bond, K., Zhang, B., Putland, M. and Williamson, D. A. (2020). Saliva as a non-invasive specimen for the detection of SARS-CoV-2. Available at: https://jcm.asm.org/content/early/2020/04/17/JCM.00776-20 (Accessed: 12 June 2020).
  • World Health Organization (WHO). (2020). Guidelines to help countries maintain essential health services during the COVID-19 pandemic; March 30, 2020. Available at: https://www.who.int/news-room/detail/30-03-2020-who-releases-guidelines-to-help-countries-maintain-essential-health-services-during-the-COVID-19-pandemic (Accessed: 11 June 2020).
  • Wu, F., Zhao, S., Yu, B., Chen, Y. M., Wang, W. and Song, Z. G. (2020). A new coronavirus associated with human respiratory disease in China. Nature, 579(7798), 265-269. https://doi.org/10.1038/s41586-020-2008-3
  • Wu, J., Liu, J., Zhao, X., Liu, C., Wang, W. and Wang, D. (2020). Clinical Characteristics of Imported Cases of COVID-19 in Jiangsu Province: A Multicenter Descriptive Study. Clinical Infectious Diseases, ciaa199. https://doi.org/10.1093/cid/ciaa199
  • Xu, Y. H., Dong, J. H. and An, W. M. (2020). Clinical and computed tomographic imaging features of novel coronavirus pneumonia caused by SARS-CoV-2. Journal of Infection, 80, 394-400. https://doi.org/10.1016/j.jinf.2020.02.017
  • Yang, W., Cao, Q. and Qin, L. (2020). Clinical characteristics and imaging manifestations of the 2019 novel coronavirus disease (COVID-19): A multi-center study in Wenzhou city, Zhejiang, China. Journal of Infection, 80, 388-393. https://doi.org/10.1016/j.jinf.2020.02.016
  • Zhang, W., Du, R. H. and Li, B. (2020). Molecular and serological investigation of 2019-nCoV infected patients: Implication of multiple shedding routes. Emerging Microbes and Infections, 9, 386-389. https://doi.org/10.1080/22221751.2020.1729071
  • Zhao, J., Yuan, Q. and Wang, H. (2020). Antibody responses to SARS-CoV-2 in patients of novel coronavirus disease 2019. Clinical Infectious Diseases. ciaa344. https://doi.org/10.1093/cid/ciaa344
  • Zhou, P., Yang, X. L., Wang, X. G., Hu, B., Zhang, L. and Zhang, W. (2020). A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 579, 270–273. https://doi.org/10.1038/s41586-020-2012-7
  • Zou, X., Chen, K., Zou, J., Han, P., Hao, J. and Han, Z. (2020). Single-cell RNA-seq data analysis on the receptor ACE2 expression reveals the potential risk of different human organs vulnerable to 2019-nCoV infection. Available at: http://www.ncbi.nlm.nih.gov/pubmed/3217056024 (Accessed: 10 June 2020).
LICENSE
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.